Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale.

نویسندگان

  • Li Li
  • Nitin Gawande
  • Michael B Kowalsky
  • Carl I Steefel
  • Susan S Hubbard
چکیده

It has been demonstrated in laboratory systems that U(VI) can be reduced to immobile U(IV) by bacteria in natural environments. The ultimate efficacy of bioreduction at the field scale, however, is often challenging to quantify and depends on site characteristics. In this work, uranium bioreduction rates at the field scale are quantified, for the first time, using an integrated approach. The approach combines field data, inverse and forward hydrological and reactive transport modeling, and quantification of reduction rates at different spatial scales. The approach is used to explore the impact of local scale (tens of centimeters) parameters and processes on field scale (tens of meters) system responses to biostimulation treatments and the controls of physicochemical heterogeneity on bioreduction rates. Using the biostimulation experiments at the Department of Energy Old Rifle site, our results show that the spatial distribution of hydraulic conductivity and solid phase mineral (Fe(III)) play a critical role in determining the field-scale bioreduction rates. Due to the dependence on Fe-reducing bacteria, field-scale U(VI) bioreduction rates were found to be largely controlled by the abundance of Fe(III) minerals at the vicinity of the injection wells and by the presence of preferential flow paths connecting injection wells to down gradient Fe(III) abundant areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uranium bioreduction rates across scales: biogeochemical hot moments and hot spots during a biostimulation experiment at Rifle, Colorado.

We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydrau...

متن کامل

Spatial Distribution of an Uranium-Respiring Betaproteobacterium at the Rifle, CO Field Research Site

The Department of Energy's Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in r...

متن کامل

Natural humics impact uranium bioreduction and oxidation.

Although humic substances occur ubiquitously in soil and groundwater, their effect on the biological reduction of uranium(VI) and subsequent reoxidation of U(IV) is poorly understood. This study investigated the role of humics in enhancing the bioreduction of U(VI) in laboratory kinetic studies, in field push-pull tests, and in the presence or absence of metal ions such as Ca2+ and Ni2+, which ...

متن کامل

Elucidating Bioreductive Transformations within Physically Complex Media: Impact on the Fate and Transport of Uranium and Chromium PIs:

Uranium and chromium are two elements of particular concern within the DOE complex that, owing to their abundance and toxicity, appear well suited for biologically mediated reductive stabilization. Subsurface microbial activity can alter the redox state of toxic metals and radionuclides, rending them immobile. Furthermore, anaerobic bacterial metabolic products will help to buffer pulses of oxi...

متن کامل

Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment.

Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O2, NO3(-)), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 45 23  شماره 

صفحات  -

تاریخ انتشار 2011